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INTRODUCTION

In studies of human traits, observations are often taken on each member of a sibship
(called simply a family), and several families are examined in a study. Statistical
methods of handling such data are known as segregation analysis.

In this paper, individuals possessing a trait under consideration will be called
"affected"; otherwise they will be called "normal."

Let 0 be the probability that a child born in a family of certain mating type will
be affected. Thus, the probability that in a family of size s there will be r affected
children is

Pr(r) = (5)Or(l - 0)s-r r = 0,1,. . , s (1)

The probability function will be called the segregation distribution, and 0 will be called
the segregation parameter.

Consider three parental phenotype mating types: Normal X Normal, Normal X
Affected, and Affected X Affected. The early methods developed in segregation
analysis apply to the cases with only one segregation distribution within a given
parental phenotype mating type. Usually this takes place when a trait is a simple
recessive or a dominant with a very low gene frequency (a rare trait). However,
if a trait is a common dominant (i.e., the frequency of the gene A is not too low)
or the mode of inheritance is complicated by other parameters such as incomplete
penetrance or differential viability or can be controlled by two or more loci, more
than one kind of mating is distinguished, each with different segregation distribution
within a given phenotype mating type. These matings shall be called segregation pat-
terns. Suppose, for example, that a trait is a single, common dominant. Within a
phenotype mating type Dominant X Dominant, there are genotype mating types:
AA X AA and AA X Aa (both belonging to a segregation pattern with 01 = 1)
and Aa X Aa (with 02 = 4)

Statistical methods which take into account different segregation patterns within
a given phenotype mating type will be called complex segregation analysis. A great
advance in this field has been effected by Morton. He and his co-workers (see Chung
et al. 1959; Morton 1959, 1962, 1963; Barrai et al. 1965; Dewey et al. 1965; Mi 1967)
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derived models which apply when the proportion of sporadic cases, inbreeding co-
efficient, and prevalence are introduced, in addition to the segregation parameter 0.
Peritz (1966) discussed models in which the reproductive behavior of parental geno-
types is taken into account.
The objective of this paper is to present a general-purpose model for complex

segregation analysis under fairly general conditions. The models derived by Morton
and his co-workers utilize the same ideas, and it can be shown that their models can
be considered as special cases of the general-purpose model which will be discussed
in the next section. Two models, one for incomplete penetrance and one for double
common recessives, will be given to demonstrate the use of the general model.

GENERAL-PURPOSE 1\ODEL IN COMPLEX SEGREGATION ANALYSIS

Let Ho be a certain hypothesis about the mode of inheritance of a trait. Two pheno-
typic classes are distinguished: affected and normal. Consider here the case when
the ascertainment is through the affected children, with constant ascertainment prob-
ability 7r (O < ir < 1), so that the distributions of affected children in segregating
families are truncated binomial distributions. In constructing a model for Ho, the
following steps will be useful:

1. For a given parental phenotype mating type, write down all the genotype
mating types which can potentially produce affected children. Assuming that the
population is in equilibrium, evaluate their expected proportions.

2. Group the genotype mating types according to their segregation patterns.
Let m be the number of distinct segregation patterns, and O, the segregation param-
eter for the tth pattern (t = 1, 2, . .. I, i).

3. Let Pt,, be the probability that a family of size s within the tth segregation
pattern has r affected children and is ascertained. Thus

= [1 - (1-_)r](s)0r(1 ot)s- r (2)

t = 1,2 ... I m; r = 1, 2,.. ,s; s = 1, 2,.. ,S. The probability Qt, that such a
family has been ascertained at least once is

a

Qts = ZPtrs = 1- (1 -7rt)s. (3)
r=1

4. Let kt be the expected proportion of families within the tth segregation pattern,
with

m

¢=1.(4)
t=l

5. Let Pr, be the probability that an ascertained family of size s has r affected
children. Thus,

Pr8 = ( (ttrs tQt). (5)

130



COMPLEX SEGREGATION ANALYSIS

The probability in (5) is a weighted sum of the proportions P178. Notice that
for m = 1 the probability in (5) takes the known form

[1 - (1 - )r]( ) Or(1 _ 0)S-r
Prs = -( -68 6

6. In the general case, the segregation probability, O,, might be a function of some
other parameters such as penetrance, different viabilities of gametes, etc. Suppose
that there are g independent parameters, I' = (il, (2, ...., #3), so that Ot = Ot(g),
= 1, 2, ... , m. Also, the proportions 4t might be functions of the g parameters
= (1), (2, . .. I, O) mentioned before, and additionally a function of f independent

parameters a' = (al, a2, . . . , af) (for instance, the a's can be gene frequencies).
Let us write the vector (cl', 5') in the convenient form

(a,1) ) = (oil ..* , af, 01, ..* *,gA) = y' = (1,y 72, * *YM), (7)

with M = f + g. Thus, in the general case, the probabilities Pr8, defined in (5), can
be functions of M independent parameters y' = (AYl, 72, ... , 'YM), that is,

Pr8 = Pre (y) . (8)

7. Let n8 be the number of families, each of size s, ascertained for a given pheno-
typic mating type, and let ar8 be the observed number of families with r affected
children, with

Zar. = ne. (9)r=l

For given n8, the quantities ar8 can be considered as random variables having a multi-
nomial distribution with parameters P78(y), respectively, that is,

8 a78

Pr(ai8, * . X a.;y) = n8d!Ti1(P !) . (10)

Notice that
E(ar8) = n8P7r8 r = 1,2,.. ,s. (11)

8. For particular ascertainments: (a) For truncated complete (ir = 1) all for-
mulas are valid when substituting ir = 1. (b) For single ascertainment (ir -* 0),
use the approximation

1-(1-)~=r_r; 1-(-7rt)-s srt =Qts. (12)

Substituting (12) into (5) and denoting

Ptr8 = ( 0ft (1(- )8r13

it can be shown that (5) takes the form

Prs = Prs = (EOPtr8 E tot (14)
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9. The models can be generalized to situations in which n8 is also a random vari-
able, and ascertainment is through the parents.

LIKELIHOOD EQUATIONS AND INFORMATION MATRIX

Denote
m m

A = Ars(Y) = 24tPirs and B = Brs(T) = Z45tQts- (15)
t=1 t=1

The probability in (5) can be written in the more convenient form

Pr8 = PrS(Y) = Ars(Y) A (16)Br8(T) B (6

The maximum likelihood estimators of the M functionally independent parameters
Y' = (71, 72,.. . , ym) are to be found.

For a given sample of n. families, each of size s, the likelihood function denoted
by L8 is given by (10). Taking into account (16) the logarithm of L, is obtained, that
is)

8

log L. = Const + f[log A - log B]ars. (17)
r=1

The logarithm of the overall likelihood function, L, say, is
S

log L = , log L8, (18)
8=1

where S is the number of different family sizes.
Let ui8(r) = uj8(y r) denote the individual score with respect to the parameter

'yi, for given s, in the rth multinomial class. We have

ui,(r) = ui8(T I r) = iOA _ OB ' (19)A c y i B &y,.

for i = 1, 2, .. ,M; r = 1, 2, ... , s.
It should be noted that in the general case the derivative oA/lay can be of the

form
aA M 4A~491 A (Ptral

-f= L a0 AaE_ (20)
49-yi t=l a9oi (9'Yi aPtr., (ati

i = 1, 2, ... , M. The derivative aB/,Oyi has a similar form. The total score for the
sample of n8 families, each of size s, Uj8, say, is

Uis = Zar8uis(r) , i = 1 2, ..., 21; (21)
r=1

and the overall score with respect to the parameter -yi, Uj, say, is
S

Ui =E Ui8 , 2, ... M. (22)
8=l
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To obtain the maximum likelihood estimates, solve M (linearly independent) equa-
tions of the fonn

Ui= ,E [ =0A_ 1OB]=0 (23)8=7r=LAO0-yj B a-yJ
i= 1,2,...,M.
A unique set of solutions exists provided

M

M < Z(s-1),
1=

which is usually the case.
The elements of the expected information matrix, I8, are

s

Iiis = ZE(ars)ui'(r), i = 1, 2, . .. M,M
r=1 (24)

Itis = ZE(ars)ui8(r)ujs(r), i IIji, = 1, 2 . .. , M1.r=l

The elements of the overall information matrix, I, are
S S

Iii = EZi8; Iij = EIij, i, j = 1, 2,... X M, (25)
8=1 81

so that
S

I= 7z8. (26)
.q-1

TESTING HYPOTHESES

1. Suppose that allM parameters are specified by the null hypothesis Ho: y = Yo.
Let

U'(yO) = [U18s(YO) , U2s(yo) , . . . , Uss(yo)] (27)
be the vector of scores Ui8, defined in (21), and evaluated at the point y = yo, and
I&(yo) be the expected information matrix. Thus the statistic

S

XTotal = EU8(Yo)Is8('o)Us(Yo) (28)
s=2

is approximately distributed as x2 with 'M(2S - M - 1) degrees of freedom.*
Notice that the summation begins with s = 2, since the families with s = 1 child
contribute nothing to Xot0l. The statistic Xjotai can be used in testing whether the
data as a whole fit the hypothesis Ho: y = yo.

* When s < M, the rank of the matrix I is equal to s - 1, so that for s < M each term U'IFsU. in
(28) contributes only (s - 1) degrees of freedom. On the other hand, for s > M, each of the remaining
(S - M) terms contributes M degrees of freedom. Hence the total number of degrees of freedom is
1 + 2 + 3 + . .. + (M -1) + (S-M)M = [M(M -1)1/2 + M(S-M) = IM(2S-M -1).
Notice, of course, that when families of certain sizes s < M are missing, the formula for the num-
ber of degrees of freedom should be appropriately modified.
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If XTotal is significant, a further splitting up of the sum (28) would be useful. Let
S S

U(yo) = EU'(yo) and I(yo) = 1I8(yo) (29)
8=1 8=1

be the overall vector of scores and the expected information matrix of combined data
from families of all sizes. The statistic

Xcomb = U'(yo)I-1(yo)U(yo) (30)

is approximately distributed as x2 with M degrees of freedom.
Finally the statistic

2 x2 X2(1
XDiff = XTotal - XComb (31)

is approximately distributed as x2 with IM(2S - M - 1) -M = 'M(2S - M - 3)
degrees of freedom, and is used as a test criterion for heterogeneity.

2. If all M parameters are not specified, substitute into (28) the pooled esti-
mates, ' = -Y -2,2. .., lM), say, obtained by solving system (23). Thus the statistic

S

2otal Diff -= EU(y+)I81)U8(y) (32)
8=1

is approximately distributed as x2 with IM(2S - M - 3) degrees of freedom.
3. If among M parameters only K are specified, then the statistics (28) and (30)

can be evaluated for K of the 7o's and M - K of the Ai's. The degrees of freedom have
to be appropriately decreased by subtracting (M - K) from the degrees of freedom
given in (1).
Some applications are now demonstrated.

SEGREGATION ANALYSIS FOR A SINGLE RECESSIVE
WITH INCOMPLETE PENETRANCE

If a genotype aa expresses itself as if it were AA (or Aa), the gene a is said to be
incompletely penetrant in a recessive. A similar situation may occur with the gene A,
which might be not penetrant in the heterozygote Aa. This can also be extended to
traits controlled by more than one locus. The expected proportion of phenotypes
which do, in fact, express themselves is called the penetrance parameter, denoted by /.

Incomplete penetrance is a complicated phenomenon. It probably depends on the
interaction of allelic (or even nonallelic) genes, but environmental conditions may
play quite a significant role. It can also be controlled by a separate locus, either linked
or independent. Thus this problem cannot be solved uniquely, and different segrega-
tion models have to be constructed for different assumptions.
A model is presented here for which these assumptions are rather simplified.
Let A and a be dominant and recessive alleles, respectively, at a single locus.

Assume that: (1) the phenotypic expression of genotype aa is incompletely penetrant;
(2) penetrance is associated with the locus under consideration or closely linked to it;
(3) the environment has very little (random) effect and can be neglected; and (4) there
is no physiological effect of genotypes or age of the parents. If these assumptions do
not hold, at least approximately, the model will be not valid.
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COMPLEX SEGREGATION ANALYSIS 135

Table 1 exhibits segregation models in segregating families and is self-explanatory.
The segregation analysis for this model is as follows:

PARENTAL PHENOTYPE MATINGS NORMAL X AFFECTED

Using the notations introduced in the second section,
4)1= h= q(1-3)/[2p + q(1-fl)];

02 = 1 -h = 2p/[2p + q(1 - f3)],

TABLE 1

SEGREGATION MODEL FOR SIMPLE AUTOSOMAL RECESSIVE WITH
INCOMPLETE PENETRANCE (SEGREGATING FAMILIES)

EXPECTED PROPORTIONS OF MATINGS
WHICH CAN PRODUCE AFFECTED CHILDREN SEGREGA-

TION PA- SEGREGATIONMATINGS
RAMETER DISTRIBUTION

In a Given Parental (0)
In a Population Mating Type

('0)

One Parent Unaffected

aaXaa... 2q4o(1-f) q(1 -p3) S

2p+q(1lj) 2M r -=1-h

Total. 2q3#3[2p+q(l-#3)] 1
.|

Both Parents Unaffected

aaXaa... q4(1 -#)2 q2(1 -)2 ; S or(I__ )8-r

aaX Aa ..... ( 4pq3(1 -/f3) 13|( ),r(-1 3)s-rJfq\I.', ~~[2p+q(1 -#/)]2 -

=2h(1- h)

AaXAa. 4p2q2 [ 4pq( )] | (s)(/3.)G(I-.)s r

(I(1h)2

Total. q22p+q(1-/3)]2 1............
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where p = 1-q. Further, 06 = A and 62 = 2I3. Hence

PFrs = [1 - r(1-_ )r]Qf3r(i -

(34)
Pirs = [1 - (1 - 7r)r]Q( 1i)r(1 - lf)s-r

and
and

~~~QIS = -(-ro)s, Q2s =1 (1- 71ro) (35)

Finallv,
hPlrs + (1 -~ rPrs = Prs(13, q) = hQi, + (1 - h)Q2s (36)

The particular cases, 7r = 1 and 7r- 0, are straightforward.

PARENTAL PHENOTYPE MATINGS NORMAL X NORMAL

The second (bottom) part of table 1 is self-explanatory. The coefficients 41, 02,
0)3 are h2, 2h(1- h), (1 - h)2, respectively. The probabilities Pirs, P2rs and Qls,
Q2s are the same as in (34) and (35), respectively. Additionally,

P3rs = [1 (1 - 7r)r]Q(i/3)r(l - 1lf)s-r (37)

and
Q38= 1- (1- g)s (38)

The multinomial parameters, Prs, are

Prs = Prs (1I q) = h2Pirs + 2h(1 - h)P2rs + (1 - h)2P3rs (39)rh2Qis + 2h(1 - h)Q2s + (1 - h)2Q3a
The logarithms of the likelihood functions, L8(3, q) and L(,B, q), for both parental
phenotype mating types are straightforward to evaluate, using the results of section
3 (for details, see Appendix). This model is illustrated by the following example:

Example 1

Rheumatic fever is a certain acute form of rheumatoid arthritis. There is some
doubt whether heredity plays an important role in this disease (O'Brien et al. 1965).
Howev-er, some investigators believe that heredity plays some role, and it is usually
suggested that it might be a single autosomal recessive.

Table 2 presents some data fronm Stevenson and Cheeseman (1953) on rheumatic
fever in children from three to 18 years old in 388 families with both parents un-
affected, each family ascertained by one proband.

Although one may assume that the ascertainment was single, he also should
notice that there are only a few families with more than two affected children, and
the assumption -r-+ 0 might be incorrect. Since xr is unknown, the analysis is pre-
sented for two limiting cases: 7r = 1 and ir -* 0.
The analysis was performed using an IBM 360/75 computer. The program in

FORTRAN IV was written by Mrs. Ellen Kaplan. The following results were obtained:
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a) Complete (truncated) ascertainment (7r = 1). The ML-estimates are: A = 0.2339,
= 0.3378, and the estimated variance-covariance matrix is

E 1.3015 -0.4654-
I'1 q) -V(j3, = -0.4654 0.1675]

The X20ta1 = X2iff = 36.81 with 21 df. It is not significant at the significance level
a = .01, but it is significant at a = .05.

TABLE 2

JUVENILE RHEUMATISM IN 388 FAMILIES RECORDED BY ONE AFFECTED CHILD

NO. OF FAMILIES WITH r AFFECTED CHILDREN TOTAL
a,8 No. OF

No. OF AFFECTED
FAMILY No. OF
SIZE FAMILIES ALL CHIL- CHILDREN

S IZE FDREEN No. of Affected Children (r)
sns

__ __ _E -ra

1 2 3 4 5 j

1 .19 19 19. . ....... ......... ......... ......... 19
2. 67 134 66 1 ... 68
3 73 219 66 5 2 . ................. 82
4. 72 288 63 9 ... 81
5. 46 230 38 8 ... 54
6.43 258 33 8 2 .................. 55
7. 23 161 19 4 .... 27
8 .21 168 14 6 1 . ................. 29
9 .13 117 8 4 1 . ......... 19

lo10 8 80 2 3 1 1 1 20
11.1.... 11 1 .................... . .1
12 1 12 1 .......... ........ . .1
13 .1 13 1 ......... ..... ......... ......... 1

Total.... 388 1,710 331 48 7 1 1 457

NOTE.-Both parents unaffected.
SOURCE.-Stevenson and Cheeseman (1953).

b) Single ascertainment (7r-+ 0). Here, A = 0.124, q = 0.3310 and

I-,l( A) - V@, =
5.8353 -1.0945-

-1.0945 0.2055]
2 2

Then XTotal = XDjff = 30.56 with 20 df. (Note that in the case of single ascertain-
ment, s has to be replaced by s - 1 so that the number of degrees of freedom is
[(M - 1) (M - 2)]/2 + M(S - M - 1). Here X20t"5 is not significant at a = .05.
The data "almost" fit the hypothesis of a single recessive with incomplete pene-

trance, although the fit is not too obvious. It would be useful to have more (medical)
information.

A MIODEL OF SEGREGATION ANALYSIS FOR A COMMON
AUTOSOMAL DOUBLE RECESSIVE

It is suspected that a trait might be a double recessive, aabb, and the frequencies
of the genes a and b are both very low (i.e., the trait is rare). The parental matings
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TABLE 3

SEGREGATION MODEL FOR (COMMON) DOUBLE AUTOSOMAL
RECESSIVE (SEGREGATING FAMILIES)

EXPECTED PROPORTIONS OF MATINGS

WHICH CAN PRODUCE AFFECTED CHILDREN SEGREGA-

TION PA- SEGREGATION
MATINGS RAMETER DISTRIBUTION

In a Given Parental (01) (UNDER Ho)
In a Population Mating Type (UNDER Ho)

(00)

One Parent Unaffected

AabbXaabb .P. .+. 4plq2P2 2_ 2 2

aaBbXcaabb..... 4qlp2q2 P1+ P2J (S)(2)()2

AaBbXaabb. _8plq3 3 2PlP2_h |1| (5)()(3)-r
Total. 4q~~ipq(P+2) P1+P

Total 4q l (pl+ p2) .. ..

Both Parents Unaffected

2 2

A abbX A abb. .. 4pqlq2 Plq2P2 (5)(1)r( )84

aaBbXAabb.... 8plq3p2q2 2pqlp2q2 p(1-h)2 4 (5)( )()4

2 2
aaBbXaaBb .. 4qlp2q2 (P1+P2)2 J 4 (s)(1)r(3)Sr

2 2
AaBbXAabb.... 16qp2q|(2p+p2)23 18 ()()(7)-r

2 2h(1-lh)
A aBbXaaBb . 16plqjP2q2 (pi (s)2)rer)o-r

AaBbXAcaBb. 16pqlp22 - 2 \1 6)

Total.4qq(p±p2_)2 1 _
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Normal X Affected are likely to be AaBb X aabb, and the parental matings Normal
X Normal are likely to be AaBb X AaBb. However, if a trait is common, more than
one segregation pattern can occur within a given parental phenotype mating type.
Table 3 exhibits all genotype matings, grouped into appropriate segregation pat-
terns. This table is self-explanatory. Under the null hypothesis that the trait is a dou-
ble recessive, the segregation distributions are given in the last column of table 3

PARENTAL MATINGS NORMAL X AFFECTED

Let 0 be the segregation parameter for the matings Single Heterozygote X Double
Recessive. From table 3, 01 = 0, 02 = 20, and 4i = 1 - h, 42 = h.

PARENTAL MATINGS NORMAL X NORMAL

Let 0 be the segregation parameter for Single Heterozygote X Single Heterozygote
(see table 3). We have 01 = 0, 02 = 40, 03 = 4O, and q1 = (1 -h)2, +2 = 2h(1-
03 = h2.

Suppose that the hypothesis Ho: 0 = Oo (i.e., for Normal X Affected, Ho: 0 = 2;
for Normal X Normal, Ho: 0 = 4) is to be tested. For each mating type, construct
the likelihood function L(0, h) as described in section 3, find the pooled estimators,
0 and I, and calculate XTotal, Xomb, and XAmff with 0 given the specified value, O0,
and unspecified h put equal to h.

Example 2

Psoriasis is a chronic inflammatory disease of skin characterized by rounded
erythematous dry scaling patches of various sizes covered by grayish-white scales. It
has been suggested that it might be an autosomal double recessive (Steinberg et al.
1951). The data in table 4 are taken from the paper by Steinberg et al. (1951) and
give the distributions of affected patients in 409 families, with both parents un-
affected.

Although all patients were probands, the analysis was performed for both limiting
cases, or = 1 and ir -÷0, for the same reason as in example 1. Using the computer
program in FORTRAN IV, the following results were obtained:

a) Complete ascertainment (7r = 1). Values obtained were 0 = 0.0991, h = 0.7617.
The variance-covariance matrix evaluated at 0 = Oo = 0.25 and h = h = 0.7617 is

[0.6709 0.31751
I'(00, Ih) =v(0, h)=

L0.3175 0.1508]

Here S = 13, M = 2, K = 1. To test the hypothesis Ho: 0 = 0.25, calculations
yield XTota, = 46.32 with 22 df, Xcnmb = 36.61 with 1 df, and X2Dff = 9.71 with
21 df.

b) Incomplete ascertainment (7r -0). Values obtained were 0 = 0.0549, I =
0.7958, and

E0.2710 0.13931
Ir(Oo, h) v(h,03)= l;

0.1393 0.0720]
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Total = 115.69 with 21 df, Xcomb = 110.20 with 1 df, and XDiff = 5.49 with 20 df.
It appears from both analyses that the data are homogeneous (X2iff in both cal-

culations is not significant), but the hypothesis that psoriasis is a common double
recessive trait does not fit the data.

TABLE 4

PSORIASIS IN 409 FAMILIES

No. OF
O. OF ALCI

FAMILIES ALL CIL-
DREN

ns
sns

22
50
72
61
62
37
28
24
24
13
7
3
6

409

22
100
216
244
310
222
196
192
216
130
77
36
78

2,039

No. OF FAMILIES WITH
r AFFECTED CHILDRFN

ars

No. of Affected Children (r)

22
45
67
55
59
32
26
22
22
11
5
2
5

373

2

5
5
6
3
5
2
1
2
1
2
1

33

3

1

1 ..

2_

SUMMARY

The paper presents a fairly general model for segregation analysis, when more than
one segregation distribution can occur for a given parental phenotype mating type.
In this model the expected proportions of affected children in families, each of size s,

and within a given phenotype mating type, are functions of segregation parameters
weighted by the relative frequencies of different segregation patterns (i.e., matings
with distinct segregation distributions within a given phenotype mating). Models
for autosomal single recessives with incomplete penetrance and for common auto-

somal double recessives are derived. Two numerical examples, one for each model,
are calculated using a high-speed computer program.

FAMILY
SIZE

1.........
2.........
3.........

4......
6.....

8.
9..
10.........
11.....
12.........
13.........

Total .....

4

TOTAL
No. OF

AFFECTED
CHILDREN

Erars
r=l

22
55
77
67
65
42
30
27
26
16
9
4
9

449

NOTE.-Both parents unaffected.
SOURCE.-Steinberg et al. (1951).

140

l



COMPLEX SEGREGATION ANALYSIS

APPENDIX

DERIVATION OF LIKELIHOOD EQUATIONS FOR ESTIMATION OF
PENETRANCE PARAMETER # AND GENE FREQUENCY q

COMPLETE ASCERTAINMENT

First consider the situation when the ascertainment is complete, that is, 7r = 1.
From formula (39), h = q(1 -)/[2 - q(1 + )]. Thus,

ah 2(1-f) Oh 2q(1-q)
49q [2 -q(1 + ,B)]21' o [2 -q(1 +,B]*(1

Let

XI= (S)r(1 - V)8r, x2 = (S)(1/)r(1 - 1#)s-r

X3= (S)(1/)( - 4I/)8r

Notice that X, corresponds to Ptr, (defined in equations [34] and [37] for t = 1, 2, 3), with
7r = 1. Let Yj = 1 - (1I- ), Y = 1 - (1 -2 3)e, Y3 = 1 -(1 - 18). Also notice that
Y, corresponds to Qt, (defined in equations [35] and [38] for t = 1, 2, 3), with ir = 1. Thus,

A = h2X1 + 2h(1 - h)X2 + (1 -h)2X3,

B = h2Y1 + 2h(1- h) Y2 + (1 -h)2 Y3
Hence,

cA aA dh Ah
-- = q-* -- = 2[(X2 -X3) + h(Xi-2X2 + X3)] d-

(iil),OB OB Oh Oh

aq = ah Oq = 2[(Y2- Y3) + h( Yj - 21<2 + Y3)] ah

and
1 oA lOB
A Oq B Oq (iV)

Also,
OX1 = (S b '(1- )- (s -r)3r(1 - /)s)r-1]

rl (- )8( -
Putting

r s-r
31B1-,B

yields
Ox1
0-B = l-

Similarly putting

2 1- and Z3 4 - 1-
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OX2
0

9Y/ = s(1 - /3)8-1 = Wi,

and aX3 = X3Z3 -

d Y2 s(1= - )s-1 =

90/P3
=W

0173 1 -= 4s(1 - 41/)8 = W3.

Therefore,

aA = OAa *a + E O-X = 2[(X2 - X3) + h(Xi - 2X2 + X3)] Oh=o Oh (9 t=1 OX t (v)o
+ [h2X1Zl + 2h(1 - h)X2Z2 + (1 -h)2X3Z3]

and

OB = OBOh h + E = 2[(y2 - Y13) + h(Y1 - 2Y2 + Y3)]

+ [h2W, + 2h(1 - h)W2 + (1 - h)2W3] .
Also,

1 aA IcAB
uOS = A ---The lkiAO B

The likelihood equations are

S 8 1 OA

E E -Aaq rs

s A
E E ---ar8

1 dA I aB
and Uqs = A aq B aq ' (vi)

E aB its = °lO1B

(vii)
s 1 OB

- E Ba:ns = O.B i9

SINGLE INCOMPLETE ASCERTAINMENT (w -*0)

Now put

X, = (S 1)/r-1(1 /)8-r I2= ( ')(1)r-1(1 1/)s-r

= (S 1 (1-)r-1( - 1/3)s-r

where Xt corresponds to Ptrs given in (18). Putting Y1 = Y2 = Y3 = 1 (after a simple
modification of equation [14]),

A = h2X1 + h( - h)X2 + 4(1 -h)2X3,
B=h2Y + h(1-h)Y2 +1(1-h)2 =-(1 + h)2.

Analogous to complete ascertainment,

(viii)

yields

Analogously
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OA 0/i
= '[(2X2 - X3) + h(4X1 - 4X2 + X3)] (IX)

-a5--=4[(2Y2- Y3)+ I(4Y1-4Y2 + y3)1 a = (1 + h)

where &h/0q is given in formula (i). Putting

Z, =

_ 2 2-2:- -F_____ si~r S~ il s

[34:
yields

Ox= aX2 OX3doX OX2 X2Z2 - =X3Z3.

Also,
0y1 _ 0Y2 9Y3

Hence,
0A 0/i
08A = i[(2X2 - X3) + h(4X1 - 4X2 + X3)] an

(x)
+ [h2X1Zl + h(1 -h/)X2Z2 + 1(1 -h/)2X3Z3],

and

0/3 = 2[(2Y2 - Y3)+ h(4Y1- 4Y2 + Y3)]a:= (l+ )a.
The likelihood equations are

8=2 r=i A dq 82- a =
(xi)

S 8 1 OA s I oB
8E A: ar8a -E W n' 0 .
a=2 r=iA090 lOB49

The likelihood equations for the problem of a double recessive can be obtained in a similar
manner. Notice that in this problem the parameters h and 0 are functionally independent,
so that the derivatives OA/0h, OA/O0, and OB/Oh, OB/O0 take a simpler form than in the
case of a single recessive with incomplete penetrance.
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